Middle School Course of Study

Course Title
- **Green Architecture**

Course Code
- J0011

Transcript Title
- Green Arch

Grades
- 7-8

Board Adoption Date
- 05/22/18

Content Area
- Engineering

GPA
- 4.0

Date Course Submitted
- 3/27/18

Credential Required
- CTE

Graduation Subject Areas
- ELECTIVE

UC/CSU "A-G" Area Approvals
- N/A

School Site/person that wrote and submitted the course:
- TeWinkle/Candice Woods

Recommend Skills
- Reading, Writing, Speaking, Mathematics

Next course(s)
- Design and Modeling, Automation and Robotics, Flight and Space, Medical Detectives, App Creators, or Computer Science for Innovators and Makers.
Green Architecture

DATE: March 2018

INDUSTRY SECTOR: Engineering and Architecture

PATHWAY: Engineering Design Pathway

CBEDS TITLE: Introduction to Engineering and Architecture (999)

CBEDS Code: 7700

HOURS:

<table>
<thead>
<tr>
<th>Total</th>
<th>Classroom</th>
<th>Laboratory/CC/CVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>90 Hours</td>
<td>25 Hours</td>
<td>65 Hours</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>JOB TITLE</th>
<th>ONET CODES</th>
<th>JOB TITLE</th>
<th>ONET CODES</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

COURSE DESCRIPTION: Students learn how to apply this concept to the fields of architecture and construction by exploring dimensioning, measuring, and architectural sustainability as they design affordable housing units using Autodesk's® 3D architectural design software.

PREREQUISITES: N/A

High School Name: N/A

Site Prerequisite: N/A

A – G APPROVAL: □ Yes □ No □ Desired

ARTICULATION: N/A

High School Name: N/A

College Name: N/A

College Course Title: N/A

LEVEL: □ Introductory □ Concentrator □ Capstone

CERTIFICATION: N/A

High School Name: N/A

Embedded/Leads to: Description: N/A
METHOD OF STUDENT EVALUATION:

✓ Pre and Post test
✓ Student Projects
✓ Written work
✓ Observation record of student performance
✓ Completion of assignments and worksheets

METHOD OF INSTRUCTION:

✓ Lecture
✓ Group and individual applied projects
✓ Demonstration
✓ Field Trips
✓ Guest Speaker

RECOMMENDED TEXTS:

PLTW Course Curriculum

MODEL CTE PATHWAY:

Click here to enter text.

<table>
<thead>
<tr>
<th>Grade</th>
<th>Fall Semester</th>
<th>Spring Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>10th or 11th</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11th or 12th</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elective</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

or

<table>
<thead>
<tr>
<th>Grade</th>
<th>Fall Semester</th>
<th>Spring Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>10th or 11th</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11th or 12th</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elective</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CALIFORNIA CAREER TECHNICAL EDUCATION MODEL CURRICULUM STANDARDS

Advanced Manufacturing and Engineering
KNOWLEDGE AND PERFORMANCE ANCHOR STANDARDS
1.0 Academics
Analyze and apply appropriate academic standards required for successful industry sector pathway completion leading to postsecondary education and employment. Refer to the Engineering and Architecture academic alignment matrix for identification of standards.

2.0 Communications
Acquire and accurately use Engineering and Architecture sector terminology and protocols at the career and college readiness level for communicating effectively in oral, written, and multimedia formats. (Direct alignment with LS 9-10, 11-12.6)
2.1 Recognize the elements of communication using a sender–receiver model.
2.2 Identify barriers to accurate and appropriate communication.
2.3 Interpret verbal and nonverbal communications and respond appropriately.
2.4 Demonstrate elements of written and electronic communication, such as accurate spelling, grammar, and format.
2.5 Communicate information and ideas effectively to multiple audiences using a variety of media and formats.
2.6 Advocate and practice safe, legal, and responsible use of digital media information and communications technologies.

3.0 Career Planning and Management
Integrate multiple sources of career information from diverse formats to make informed career decisions, solve problems, and manage personal career plans. (Direct alignment with SLS 11-12.2)
3.1 Identify personal interests, aptitudes, information, and skills necessary for informed career decision making.
3.2 Evaluate personal character traits, such as trust, respect, and responsibility, and understand the impact they can have on career success.
3.3 Explore how information and communication technologies are used in career planning and decision making.
3.4 Research the scope of career opportunities available and the requirements for education, training, certification, and licensure.
3.5 Integrate changing employment trends, societal needs, and economic conditions into career planning.
3.6 Recognize the role and function of professional organizations, industry associations, and organized labor in a productive society.
3.7 Recognize the importance of small business in the California and global economies.
3.8 Understand how digital media are used by potential employers and postsecondary agencies to evaluate candidates.
3.9 Develop a career plan that reflects career interests, pathways, and postsecondary options.

4.0 Technology
Use existing and emerging technology to investigate, research, and produce products and services, including new information, as required in the Engineering and Architecture sector workplace environment. (Direct alignment with WS 11-12.6)
4.1 Use electronic reference materials to gather information and produce products and services.
4.2 Employ Web-based communications responsibly and effectively to explore complex systems and issues.
4.3 Use information and communication technologies to synthesize, summarize, compare, and contrast information from multiple sources.
4.4 Discern the quality and value of information collected using digital technologies, and recognize bias and intent of the associated sources.
4.5 Research past, present, and projected technological advances as they impact a particular pathway.
4.6 Assess the value of various information and communication technologies to interact with constituent populations as part of a search of the current literature or in relation to the information task.

5.0 Problem Solving and Critical Thinking
Conduct short, as well as more sustained, research projects to create alternative solutions to answer a question or solve a problem unique to the Engineering and Architecture sector using critical and creative thinking; logical reasoning, analysis, inquiry, and problem-solving techniques. (Direct alignment with WS 11-12.7)
5.1 Identify and ask significant questions that clarify various points of view to solve problems.
5.2 Solve predictable and unpredictable work-related problems using various types of reasoning (inductive, deductive) as appropriate.
5.3 Use systems thinking to analyze how various components interact with each other to produce outcomes in a complex work environment.
5.4 Interpret information and draw conclusions, based on the best analysis, to make informed decisions.

6.0 Health and Safety
Demonstrate health and safety procedures, regulations, and personal health practices and determine the meaning of symbols, key terms, and domain-specific words and phrases as related to the Engineering and Architecture sector workplace environment. (Direct alignment with RSTS 9-10, 11-12.4)
6.1 Locate, and adhere to, Material Safety Data Sheet (MSDS) instructions.
6.2 Interpret policies, procedures, and regulations for the workplace environment, including employer and employee responsibilities.
6.3 Use health and safety practices for storing, cleaning, and maintaining tools, equipment, and supplies.
6.4 Practice personal safety when lifting, bending, or moving equipment and supplies.
6.5 Demonstrate how to prevent and respond to work-related accidents or injuries; this includes demonstrating an understanding of ergonomics.
6.6 Maintain a safe and healthful working environment.
6.7 Be informed of laws/acts pertaining to the Occupational Safety and Health Administration (OSHA).

7.0 Responsibility and Flexibility
Initiate, and participate in, a range of collaborations demonstrating behaviors that reflect personal and professional responsibility, flexibility, and respect in the Engineering and Architecture sector workplace environment and community settings. (Direct alignment with SLS 9-10, 11-12.1)
7.1 Recognize how financial management impacts the economy, workforce, and community.
7.2 Explain the importance of accountability and responsibility in fulfilling personal, community, and workplace roles.
7.3 Understand the need to adapt to changing and varied roles and responsibilities.
7.4 Practice time management and efficiency to fulfill responsibilities.
7.5 Apply high-quality techniques to product or presentation design and development.
7.6 Demonstrate knowledge and practice of responsible financial management.
7.7 Demonstrate the qualities and behaviors that constitute a positive and professional work demeanor, including appropriate attire for the profession.
7.8 Explore issues of global significance and document the impact on the Engineering and Architecture sector.

8.0 Ethics and Legal Responsibilities
Practice professional, ethical, and legal behavior, responding thoughtfully to diverse perspectives and resolving contradictions when possible, consistent with applicable laws, regulations, and organizational norms. (Direct alignment with SLS 11-12.1d)
8.1 Access, analyze, and implement quality assurance standards of practice.
8.2 Identify local, district, state, and federal regulatory agencies, entities, laws, and regulations related to the Engineering and Architecture industry sector.
8.3 Demonstrate ethical and legal practices consistent with Engineering and Architecture sector workplace standards.
8.4 Explain the importance of personal integrity, confidentiality, and ethical behavior in the workplace.
8.5 Analyze organizational culture and practices within the workplace environment.
8.6 Adhere to copyright and intellectual property laws and regulations, and use and appropriately cite proprietary information.
8.7 Conform to rules and regulations regarding sharing of confidential information, as determined by Engineering and Architecture sector laws and practices.

9.0 Leadership and Teamwork
Work with peers to promote divergent and creative perspectives, effective leadership, group dynamics, team and individual decision making, benefits of workforce diversity, and conflict resolution as practiced in the SkillsUSA career technical student organization. (Direct alignment with SLS 11-12.1b)
9.1 Define leadership and identify the responsibilities, competencies, and behaviors of successful leaders.
9.2 Identify the characteristics of successful teams, including leadership, cooperation, collaboration, and effective decision-making skills, as applied in groups, teams, and career technical student organization activities.
9.3 Understand the characteristics and benefits of teamwork, leadership, and citizenship in the school, community, and workplace setting.
9.4 Explain how professional associations and organizations and associated leadership development and competitive career development activities enhance academic preparation, promote career choices, and contribute to employment opportunities.
9.5 Understand that the modern world is an international community and requires an expanded global view.
9.6 Respect individual and cultural differences and recognize the importance of diversity in the workplace.
9.7 Participate in interactive teamwork to solve real Engineering and Architecture sector issues and problems.

10.0 Technical Knowledge and Skills
Apply essential technical knowledge and skills common to all pathways in the Engineering and Architecture sector, following procedures when carrying out experiments or performing technical tasks. (Direct alignment with WS 11 -12.6)
10.1 Interpret and explain terminology and practices specific to the Engineering and Architecture sector.
10.2 Comply with the rules, regulations, and expectations of all aspects of the Engineering and Architecture sector.
10.3 Construct projects and products specific to the Engineering and Architecture sector requirements and expectations.
10.4 Collaborate with industry experts for specific technical knowledge and skills.

11.0 Demonstration and Application
Demonstrate and apply the knowledge and skills contained in the Engineering and Architecture anchor standards, pathway standards, and performance indicators in classroom, laboratory and workplace settings, and through the SkillsUSA career technical student organization.
11.1 Utilize work-based/workplace learning experiences to demonstrate and expand upon knowledge and skills gained during classroom instruction and laboratory practices specific to the Engineering and Architecture sector program of study.
11.2 Demonstrate proficiency in a career technical pathway that leads to certification, licensure, and/or continued learning at the postsecondary level.
11.3 Demonstrate entrepreneurship skills and knowledge of self-employment options and innovative ventures.
11.4 Employ entrepreneurial practices and behaviors appropriate to Engineering and Architecture sector opportunities.
11.5 Create a portfolio, or similar collection of work, that offers evidence through assessment and evaluation of skills and knowledge competency as contained in the anchor standards, pathway standards, and performance indicators.
I. Architectural Basics

Architecture is the art and science of designing buildings. The basics of architectural design usually address feasibility and cost, as well as function and aesthetics. In this lesson students will learn how to use an architectural scale to accurately measure drawings and read architectural plans. They will learn about planning residential spaces, the different systems in a home, how to read the symbols found in architectural plans, and how to choose materials to remain within a given budget.

- 7.1.1 Measuring Practice
- 7.1.2 Architectural Measurement
- 7.1.3 Architectural Dimensioning
- 7.1.4 Measuring Your Classroom
- 7.1.5 Using Autodesk Revit-Creating Your Classroom Tutorial
- 7.1.6 Estimating Flooring Material
- 7.1.7 Bedroom Floor Plan Homework
- 7.1.8 Fundamentals of Construction
- 7.1.9 Reading a Floor Plan
- 7.1.10 Room Sizes and Relationships Study Guide
- 7.1.11 My Bedroom Using Revit

Optional: Project 7.1.12a Bedroom Remodeling Budget
Optional: Project 7.1.12b Dream Master Bedroom Suite.

<table>
<thead>
<tr>
<th>CR</th>
<th>LAB/CC</th>
<th>STANDARDS</th>
</tr>
</thead>
</table>

II. Introduction to Sustainable Architecture

As consumers we are often confronted with lifestyle decisions that could have an impact on our environment. Over the last several years, a lot of emphasis has been placed on going green. In addition to encouraging individuals to change their habits so that the results will be more environmentally friendly, there has also been a push to design buildings to be more green. Sustainable architecture seeks to minimize the negative environmental impact of buildings by enhancing efficiency and moderation in the use of materials, energy, and development space. The goal of sustainability, or ecological design, is to ensure that our actions and decisions today do not inhibit the opportunities of future generations. In this

<table>
<thead>
<tr>
<th>CR</th>
<th>LAB/CC</th>
<th>STANDARDS</th>
</tr>
</thead>
</table>
Lesson students will become aware of the global challenges of resource depletion and environmental degradation resulting from development and the positive effects of sustainable architecture.

7.2.1 Rebuilding Greensburg
7.2.2 Green Vocabulary
7.2.3 Why Recycle
7.2.4 Save the Earth Comic Strip
7.2.5 Indoor Air Quality
7.2.6 Building Green
7.2.7 House Style

<table>
<thead>
<tr>
<th>III. Architectural Challenge</th>
<th>CR</th>
<th>LAB/CC</th>
</tr>
</thead>
</table>
| Autodesk® Revit® Architecture building design software works the way that architects and designers think, which allows the user to develop high-quality, accurate architectural designs. It allows the user to design with both parametric 3D modeling and 2D drafting elements. Built for Building Information Modeling (BIM), Autodesk® Revit® software helps capture and analyze concepts and maintain vision through design, documentation, and construction. In this lesson students will build a wall for a wood framed shed and test insulation materials. They will use the Autodesk® Revit® software to design a sustainable home using shipping containers.
7.3.1 Wood Frame Construction
7.3.2a Building a Shed
7.3.2b Building a Wall
7.3.2c Residual Wall Construction Instructions
7.3.3a Why Insulate?
7.3.3b Why Insulate?
Why Insulate? Excel Worksheet
Problem 7.3.3 Shipping Container Home | 6 Hrs | 20 Hrs |

Science:
MS.ESS3.3-5

CTE Anchor:
2.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0
11.0

CTE Pathway:
C1.0
C2.0
C3.0
C4.0
C8.0
C10.0

Academic:
Reading:
AS.R.1.7, AS.W.4, AS.SL.2.4, AS.L.1.2.6
Technology:
1.6-8.F- H
2.6-8.N.P.R.S
3.6-8.D - F
4.6-8.D, E
5.6-8.D, F
6.6-8.D, F
7.6-8.C-E
8.6-8.F.G
9.6-8.F.H
11.6-8.H.J
12.6-8.J
16.6-8.I
17.6-8.K
20.6-8.F-I

Math:
7.EE.B.4
7.G.A.1,2
7.G.B.6

Science:
MS.ESS3.3

CTE Anchor:

CTE Pathway:
C1.0
C2.0
<table>
<thead>
<tr>
<th>IV. EMPLOYMENT PORTFOLIO</th>
<th>CR</th>
<th>LAB/CC</th>
<th>STANDARDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Students will prepare an update to their professional portfolio (lab book)</td>
<td>5 hr ONGOING</td>
<td>5 hrs ONGOING</td>
<td>Academic: Reading: AS.R.1,4,7 AS.W.2,4,7 AS.SL.1,2,4 AS.L.1,2,6</td>
</tr>
<tr>
<td>A. Portfolio showcases best professional level work</td>
<td></td>
<td></td>
<td>CTE Anchor: 1.0 2.0 3.0 11.0</td>
</tr>
<tr>
<td>B. Portfolio is organized</td>
<td></td>
<td></td>
<td>CTE Pathway: C11.0</td>
</tr>
<tr>
<td>C. Research engineers/careers specific to content</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>